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INTRODUCTION

The accomplishments of fractal modeling in materials to date are impressive. However,
characterization of fractal structure in terms of the "fractal dimension" are incomplete. The "fractal
dimension" tells us how the length, area, or density of an object varies with scale, but much more
information is required to characterize or model the more complicated structures that occur in nature.
The theory of multifractal objects provides a more comprehensive description of fractal objects. The
major efforts in multifractal analysis have been directed toward the understanding of the subset of the
more complicated fractal objects described in Halsey, Jensen, Kadanoff, Procaccia, and Shraiman (ref 1).

In order to optimally exploit multifractal perspectives, it is imperative that quantitative techniques
for the measurements of fractal properties be developed. Box-counting techniques for the measurement of
generalized fractal dimensions render the most direct application of the ideas in Halsey et al. (ref 1).

Block, Bloh, and Schellnhuber (ref 2) (BBS) have described a box-counting algorithm for the
measurement of generalized (fractal) dimensions, which they refer to as "Efficient Box-Counting" (EBC).
The present work describes two other realizations of box-counting procedures and addresses techniques for
evaluating generalized fractal dimensions over wider ranges of the controlling parameters than that
covered in the work of BBS. The multifractal models employed to test the effectiveness of the algorithms
are subject to simple analysis along the lines in Halsey et al. (ref 1), so that our "measurements" are
compared directly with analytic results.

THEORY

Fractal Measures

Although one can conceive of a more general class of fractal point sets than that analyzed in the
seminal work of Halsey et al. (ref 1), it provides a basis for the analysis of most of the known fractal point
sets, curves, etc. In particular, it provides the theoretical basis for multifractal analysis of the Koch
constructions studied here. Following Halsey et al. (ref 1), define a partition function,

r(q,y,L)= -J- where y = (1 - q) D9(q) .
Li 7

Then, for recursive constructs,

r(q,y,L")=[r(q,y,L) ]", so that r(q,y(q),L)=1. (2)
The generators of the multifractal models studied here have identical weights p, which sum to

unity, and have two length scales. Letting ui be the number of elements in the generator characterized by
the length scale I., the intrinsic values of D(q) are obtained by solving the transcendental equation

pq [ n1 Ll-y + n2L2
-y ] = 1 (3)

for y(q) = (q- 1) D,(q). This is a trivial problem, however, one could avoid dealing with transcendental
equations and solve

q(y) = -log[ n1 L,-* + n 2L2
7 ] /log [p] (3a)

for q(y). For multifractals having many scales and weights, solution of a transcendental equation is
required.
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Box-counting methods for the determination of generalized fractal dimensions are, in principle,
well known. Recently, Gould and Tobochnik (ref 3) presented a valuable pedagogical review of the
underlying concepts of box-counting methods such as those employed in the present study. The details of
the numerical procedures employed here are provided below.

Numerical Methods

Two box-counting algorithms have been employed. The first is a sorting algorithm, which is
similar to the EBC algorithm described in Reference 2. The second algorithm employs agglomeration of
the results from a smallest set of boxes.

The following definitions are useful in the description of the box-counting algorithms:

i. Let S = {sU], j= 1,...,N} be a subset of points on the fractal set, where, in order to
sin plify the exposition, the origin is chosen in such a way that all the s8[ij are positive.

ii. Let {ua I S= 1,d} define an (arbitrary) orthogonal basis for the space containing S.

iii. Define the largest scale:

Ex= max ius . ('[i] - '[j]I (4)

iv. Map the fractal subset S into the unit hypercube (d-cube) Q, by means of the affine
transformation (which does not change its fractal properties):

a.[i] _ a[i] 5
EC+E (5)

where e is a small positive number.

v. Define the minimum normalized point set spacing

Fi n = rin Ia*Ci] - a*[j] I. (6)
"i]

The Sorting Box-Counting Algorithm

i. Define a set of hypercubes (boxes), having edges E., whose logarithms are uniformly
spaced-

E.-- 1
__ M = 01(7)

int(R-' (W) m]

The parameter R allows one to select normalized maximum box sizes less than unity.
R - 1 in EBC.

The parameter e' allows one to select minimum box edge values greater than the
minimum normalized point set spacing, E.. The minimum box edge is (approximately)
E in EBC.
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ii. Sort the {s[il} according to s,'i] using "Indexed HeapSort" (ref 4). Computation time

for this step goes like N log(N).

iii. For each E., compute the "partition function" Z(q) as follows:

a. Compute a set of integer-valued coordinates:

{a 8 [i] = s[i] E. I 8 = l,...,d, i = (8)
N.b., The integer-valued coordinates will already be sorted according to al[i].

b. Define sublists of the aslil corresponding to the different values of a,[i].

c. Compute the box occupation probabilities p(E) by HeapSorting (ref 4) the sublists.
When the topological dimension d > 2 sorting is accomplished by sequentially sorting
or by sorting coordinates combined as in EBC, i.e., the (d - 1) N integer coordinates are
combined into N integers comprising a "linear list" according to the prescription:

d

(f i f ([i] " a8 [i] E " 8, i = I,...,N} (9)
8=2

N.b., The lengh of the sublists will be substantially smaller than N unless E. is near unity,
and when E. is near unity, the number of boxes is small and the sorting is much faster
than N log(N).

d. Compute the "partition function" Zm(q):

Z'(q) = (E (10)
nfl

where N(E.) is the number of E-boxes containing an element of S.

iv. Compute the generalized box-counting fractal dimension D8(q), which is defined as the
slope of the straight line fit to log(Z4(q)]/(q-1) vs log(E.). As in BBS, the subscript B
makes explicit the distinction between the intrinsic generalized dimension D(q) and that
measured by application of box-counting to finite subsets of the given fractal set. The
basis for this analysis is the generalized fractal dimension defined by Hentschel and
Procaccia (ref 5):

D(q) rli log(Z=(q)) (11)
q-1 e.-o log (E,)

where the limit is to be taken as E goes to zero for the perfect fractal. This form is also
discussed in Halsey et al. (ref 1).

Discussion of the Sortin Alto'ithm

Sorting algorithms are flexible in the range and distribution of box sizes employed and are
efficient in the use of storage. However, computation time goes like N log(N), and precise coordinate
definition is required for proper box allocation at each L We discuss the present sorting algorithm by
comparison with EBC.
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Most of the features of EBC pertain to efficient use of computer storage and computation time
and do not affect the reliability of the determined generalized fractal dimensions. In particular, although
different sorting strategies may result in different computation times, they cannot affect the results.

There are five features of the EBC procedure that are not in accord with the present procedure
and/or may not be routine assumptions in box-counting and may influence the results.

Although they do not disclose the essential features of the technique, BBS emphasize the
fact that an essential feature of the EBC method is "classwise linear regression with
random point selection" for the determination of the slope. "Classwise linear regression
with random point selection" determines D,(q) for the subset ("pivotal values") of E,
(from the original logarithmically spaced set) for which "best" linear fitting is achieved.

The specific algorithm employed in EBC might make a substantive difference for q < 0,
where plots of log[Zm(q)l/(q-1) against log(E) tend to be extensively scattered. (BBS did
not report Ds(q) for q < 0.)

One expects that conventional linear regression is applied in most box-counting analyses.
We have applied conventional linear regression based on minimization of least squares
and absolute deviations in the present study.

ii. EBC chooses the minimum box side in {Em} as the minimum magnitude of the vectorial
distance between elements of the point set S. This prescription has the advantage of
defining e" simply and uniquely in terms of the points in S. This assumption yielded
unsatisfactory results when applied to the analysis of the multifractal point sets studied
here.

iii. EBC chooses the largest box size such that (within a small positive number e) it just
covers the point set in the arbitrarily selected orientation of the boxes. We have run
calculations employing smaller "largest" Em (i.e., we have run tests with R < 1). Although
there are observable changes in D,(q) with R, the effects were small for R e [0.1,11 in the
present work.

iv. Uniform spacing of log(E.) is prescri!3ed in EBC. This amounts to a choice of weighting
factors for different levels of scaling. We have investigated other sets of {E,}, which
seem to work just as well. However, logarithmically spaced {E} is a natural choice in
the sense that each order of scales is equally represented, and so it is adopted for the
present work.

v. The use of QuickSort (ref 4) in EBC cannot lead to erroneous results and is usually the
fastest sorting algorithm; however, it is dangerous in the sense that it can require
computation times that go like N2 (see Reference 5). Thus, we employ HeapSort (ref 4),
for which computation time always goes like N log(N).

Although sorting of the derived "linear list" as in EBC is conceptually simple, it seems to be a bad
strategy (in terms of computation time) for large lists and e" near E.-. For example, applying the present
algorithm to a point set in E1, after the presort of the original (possibly floating point) list of coordinates,
only searching of ordered lists of integers for changes is required, i.e., no further sorting is required in E'.
Similar efficiencies associated with sorting shorter sublists can be expected for d > 1. At some value of e',
sufficiently larger than Ed,, and/or for a small enough number of values of E., it becomes more efficient
to avoid presorting of the entire list even in E, and one expects that no penalty in computation time
should be associated with the use of the derived "linear list."
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Tw Ainlomeratiom Box-Counting Algorithm

i. Define a set of nested hypercubes ("boxes") appropriate for the given (or anticipated)
point set S, such that the boxes have edge lengths,

E(k,m,... ) - E0 /(2k3 0...) (12)

where k e {0,1,...,10, m e

We refer to the smallest boxes in the set, i.e., those having edge length E(K,M,...), as
elementary hypercubes or elementary boxes.

ii. Determine the occupation numbers <na> for each of the elementary hypercubes. If the
boxes do not include all members of S, redefine N

iii. For all combinations of k, i,...:

a. Compute the occupation numbers a, for each of the [2 3 1...]d hypercubes by summing
the occupation numbers of the constituent subsets of contained elementary hypercubes.

We refer to this step as "agglomeration."

b. Determine the p, = n1N for each box and compute the "partition function" Z(k,m,...;q)
for the set of q for which D,(q) is to be determined as in Eq. (10). Empty boxes are
not included.

iv. Compute the generalized box-counting fractal dimension DB(q), which is defined as the
slope of the straight line fit to log[Z(km,...;q)l/(q-1)vs log[E(km,...)j.

Discussion of the AsMnomeration Algorithm

The agglomeration algorithm may be inefficient in its use of storage, since information about
empty boxes is maintained. However, the method has definite advantages. It is well-suited for application
to "large" point sets, since computation time is essentially independent of N. Furthermore, the initial
allocation of occupation values to the smallest boxes may be the natural way to treat the data obtained
from automated image acquisition systems.

RESULTS

The present box-counting algorithms were applied to Euclidean point sets and point sets
generated by simple Koch recursions (ref 6) in E' and E2. Applications of the sorting strategy in E2 were
for sets having 1,000 < N < 50,000. The agglomeration technique was applied for 100 < N < 1011;
sorting is not a practical alternative for the larger point sets.

Monofractals in E

A. Integer Dimensions: Euclidean Point Sets in E

Euclidean point sets are thought of as degenerate examples of monofractals in the present
investigation.

5



1. Random Points on Lines and on the Unit Souare

Figure I shows fractal dimension values obtained by applying the agglomeration algorithm for
K-8 and M= I to a range of numbers of random points on a straight line segment at two orientations in
E2 with respect to the box axes. Dn(q) converges at all q; out at negative q, D,(q) does not always
converge to 1.0.

Figure 2 shows fractal dimension values obtained by applying the agglomeration algorithm for
K- 8 and M= 1 to a range of numbers of random points on the unit square. Convergence of D,(q) within
1 percent to 2.0 is obtained at q = -5, 0, 5, and 25; DB(-25) converges to 2.062.

Figure 3 shows sorting results for 2000 random points in the plane for e ' {0.01,0.05,0.10,0.251.
The "best" values at negative q are obtained for e" - 0.05 and at positive q for e" 0.25. The best values
at all q would be obtained for e' between 0.05 and 0.10, which corresponds to an average box occupation
of about 10 points. Better convergence is obtained with larger N, but the existence of an optimal e"
substantially greater than the minimum spacing in S is generally found.

Similar results are obtained for random and equally spaced points on sawtooth curves and circular

arcs.

B. Monofractal Koch Constructions in E'

1. (Symmetric) Koch Triadic Snowflakes (ref 6)

Figure 4 shows results obtained by applying the agglomeration technique for K=8, Mf= 1 to Koch
triadic snowflakes.

a. Results at q > 0:

Although convergence is slower than that reported by BBS for EBC (on Euclidean point sets),
agglomeration D,(q) exhibits convergence from below with increasing N; DD(O), D,(5), and D,(25)
are within 1 percent of D(q) for log(N) > 4.

Sorting box-counting results for the triadic snowflake were similar to those obtained for
uniformly spaced Euclidean curves in that, for 2 E,.. < Hr< 0.05, 0 < q < 9 and N > 1,000, the
DB(q) are weakly e'-dependent and are within about 2 percent of the intrinsic (constant) D(q)
values; D,(0) and D,(3) values within 0.5 percent of D(0) were obtained for e" r 2 E,. and N -
3 4' =49,152. D(q) tended to decrease with increasing q for q > 5.

b. Results at q < 0:

The values for Ds(-25) and D,(-5) obtained by the agglomeration technique for K=8, M= 1 do
not converge for N < 10'; the "best" values are obtained when log(N) - 5.5. The minimal box
edge, E(8,1) = Emx/(2' 3) = Emux/768 corresponds to the minimum spacing at

log(N) = log(3) + D log(768)) = 4.1.

Thus, for q < 0, the best values obtain for minimal box edge about 10 times larger than the
minimal spacing in the point set. The D3(-5) and D,(-25) curves cross near log(N) = 4.1. Table 1
gives values of normalized D,(q) (= D,(q) log(3)/log(4)) vs level (N = 3 4!") and q for the Koch
triadic snowflakes.
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For q < 0, D 3(q) curves obtained by sorting were strongly dependent on e" and tended to more
closely resemble the intrinsic (constant) D(q) for e" = 2 E,,.. For e* < E,=, DB(q) are monotonic
increasing at negative q.

Similar results are obtained for Koch quadric islands (ref 6).

Multifractals in E'

The sorting box-counting algorithm was applied to the logistic equation mapping employing one-
dimensional hypercubes. The f-a spectra deduced from DB(q) were in accord with those shown in Gould
and Tobochnik (ref 3).

Multifractals in E

The box-counting algorithms were applied to asymmetric Koch triadic snowflakes and Koch split
snowflake halls. The asymmetric Koch triadic snowflakes were produced by modifying thL. symmetric Koch
triadic snowflake generator such that the angles are unchanged, but the outer segments are twice as large
as the central segments, i.e., the inner and outer segments of the generator have relative lengths 0.2 and
0.4, respectively. Mandelbrot (ref 6) defines split snowflake halls as the level 4 form of the construction,
which at level 3, he defines as the monkey tree. Here we refer to all levels of the construction as split
snowflake halls.

A. Asymmetric Koch Snowflakes

1. Sorting Results

Figure 5 shows D,(q) obtained by sorting box-counting for level 7 (N = 49,152), asymmetric
[0.4,0.21 Koch snowflakes. The dashed curve is the intrinsic D(q). The following attributes may be
observed:

a. Pesults for 5 > q > 0:

For e' values ranging between about 0.001 (- 75 E..in) and about 0.010 (- 750 E.=), DB(q)
closely approximates the intrinsic D(q). DB(O) values are weakly e'-depenuent over the specified
range of e" and are within 1 percent of their intrinsic values. D,(3) values are weakly &-
dependent over the specified range of e' and are generally within 2 percent of their intrinsic
values. The discrepancy is larger at larger q. The discrepancy between DB(qJ and D(q) is quite
large for e" = Emm.

The requirement that e" > 75 E. can be understood as follows: E,. is determined by the most
dense regions of the point set. The snowflake considered has least dense regions, which are
(0.4/0.2)7 = 128 times less dense. Therefore, e" = 128 E. are minimal spacings in the least dense
regions of the level 7 construct. Hence, e" = 75 E,, is a reasonable value to characterize the
entire point set, and it is clear that the EBC choice, e" = E., is too small.

b. Results at 9 < 0:

D3 (q) curves were strongly dependent on e'. Curves that approximate D(q) reasonably well
over the entire range of q are obtained for e" between 0.001 and 0.004. The curve obtained for e'
= 0.0025 is closest to D(q), while that for 0.001 is smoother near q=0 but is slightly further from
D(q). One may observe the beginning of the formation of a slight belly near q = 0, as e'
increases through 0.0025.
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2. Asplomeration Results

Figure 6 shows Ds(q) curves for q = {-25,-5,0,5,251 and various N for the [0.4,0.21 asymmetric
triadic snowflakes measured via K = 8, M = I boxes; Table 2 gives values of normalized Ds(q) (-
Ds(q)/D(q)) vs level (N = 3 4' ) and q. Converged values for q > 0 are obtained as 0.41 passes
through the box edge length E(8, 1) of the elemental boxes. The "best" values at negative q occur for these
transitional cases, which fall at log(N) slightly beyond that for which the Ds(-5) and Ds(-25) curves cross.

Figure 7 shows similar results for K = 3, M = 1, P = I (E(3,1,1) = E..(2 3 5) = E../120);
Table 3 gives values of normalized Dq(q) vs level and q. Note, in particular, that convergence is obtained
for values of N about one-fifth as large as in the K = 8, M = I case.

B. Split Snowflake Halls

1. Sorting Results

Figure 8 shows D,(q) obtained by sorting box-I.unting for level 4 (N = 1 + 11") split snowflake
halls. The dashed curve is the intrinsic D(q). The following features may be observed.

a. Results for q > 3:

For e" values ranging between about 7 ,.. and 30 F... , D,(q) closely approximates the
intrinsic D(q). D8(3) values are weakly e'-dependent over the specified range of e, but are
generally within 2 percent of their intrinsic values and are closer at larger q. The discrepancy
between D,(q) and D(q) is large for e" = E..

b. Results for 3 > 9 > -1:

For e* values ranging between about 7 E. and 0.07, D,(q) are weakly -dependent, but lie
substantially below the intrinsic D(q). D,(0) values are about 12 percent low.

c. Results at 9 < -1:

DB(q) curves were strongly dependent on e'. Curves that most closely approximated D(q) for
this range of q, in the sense of rms deviation, behaved badly near q = 0 and had 6" values outside
the range and larger than those for which the "best" approximation in the q > -1 region obtains.
No value of e" produced a monotonic decreasing D,(q).

2. Agglomeration Results

Figure 9 shows D,(q) curves for q = {-25,-5,0,5,25} and various N for split snowflake halls
measured via K = 8, M = I boxes; Table 4 gives values of normalized Dq(q) (= DB(q)/D(q)) vs level (N
= I + 11") and q The "best" values at negative q occur for log(N) slightly larger than that for which
the D,(-5) and D,(-25) curves cross.

Figure 10 shows similar results for K = 3, M = 1, P = 1; Table 5 gives values of normalized
D,(q) vs level and q. Note, in particular, that convergence is obtained for values of N about one-fifth as
large as in the K = 8, M = I case.
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CONCLUSIONS

The sorting and agglomeration box-counting algorithms are effective for the determination of
DD(q) for q Z 0. However, the present implementations yield unreliable results for q < 0.

D,(q) values converged from below for q a 0 and overshot and converged from above at q < 0
for random points on Euclidean objects. Therefore, convergence to D(q) for Euclidean point sets is not a
sufficient condition for demonstrating the effectiveness of an algorithm.

Sorting box-counting algorithms require storage of d*N double precision (eight bytes) floating
point numbers and cpu time varies as N log(N). The input data to the algorithm are the coordinates of
the points. In order to achieve the best results, the particle coordinates must be known precisely so that
box occupancies for the various box edge lengths in the set can be determined. This constraint is relatively
easy to satisfy for mappings or other recursively defined point sets, but may be exacting for experimentally
acquired point set coordinates.

The agglomeration box-counting algorithm requires storage of (2K 3 u...)d integers and the cpu time
is proportional to (2K 3 '...)d. Although we used four byte integers in the present work, two byte integers
are probably sufficient in practice. Cpu time and storage requirements are independent of N, and
therefore agglomeration algorithms may be the only practical technique for application to cases where N is
"large." The input data to the algorithm are elementary box occupation numbers rather than precise
coordinates. This could be an important distinction for image acquisition systems, which provide data in
this form. Thus, the agglomeration technique works equally well for mappings or other recursively defined
point sets and for experimentally acquired point sets.

The values of N required for convergence of D at q a 0 were approximately the same for the
sorting and agglomeration box-counting algorithms in the present investigation.

For example, for d=2 and D(0) < 1.5, our experience indicates that N - 10" is required for
convergence. In this case, storage requirements for (K=3, M= 1, P= 1) agglomeration (four byte integers)
is approximately 60 Kbytes, while sorting requires 200 Kbytes. Larger N and number of elementary boxes
are required for larger D(O), but the relative advantage of the agglomeration technique with regard to
storage is maintained.

We have not tested convergence of box-counting techniques for d > 2, however we anticipate that
substantially larger N will be required for convergence. One might speculate that for d=3, N (10)" =
10', agglomeration (K=3,L= 1,M= 1) uses 7 Mbytes. Sorting would require 25 Mbytes. Of course, if
convergence is obtained for N - 10' for d=3, then sorting would require only 0.25 Mbytes, while
agglomeration would still require 7 Mbytes.

Sorting box-counting algorithms might be the best choice for relatively small sets of precisely
defined points. If "classwise linear regression with random point selection" implicitly yields sets of F,
which give good values for Ds(q) at q < 0, then EBC is probably best for the cases to which it may be
applied. However, if this is the case, the principle can probably be applied to refine the agglomeration
technique as well.

Agglomeration box-counting resulted in values for D,(q) at least as good as those determined by
sorting for all cases studied here. For the large point sets employed in our convergence studies, sorting
would have been (for the present) impractical. Computation times for the moderate-sized point sets
(required for convergence) would be competitive; agglomeration, of course, becomes relatively more
efficient as N increases.
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Table 1. Normalized Agglomeration Box-Counting [K=8,M= 1] Fractal Dimension
D,(q)/D(q) versus Level for (Symmetric) Koch Triadic Snowflakes in E.
(N = 3 4" )

Level q=-25 q-5 q=0 q=5 q=25

2 0.1187 0.1601 0.2435 0.2894 0.3191

4 0.4072 0.4993 0.7523 0.8004 0.8028

6 0.6511 0.7107 1.0070 0.9955 0.9688

8 1.0017 0.9581 1.0158 0.9985 0.9835

10 1.3632 1.2259 1.0161 0.9984 0.9834

12 1.7321 1.5283 1.0162 0.9983 0.9834

14 2.1031 1.8391 1.0162 0.9983 0.9834

Table 2. Normalized Agglomeration Box-Counting [K=8,M= 1] Fractal Dimension
DB(q)/D(q) versus Level for Asymmetric [0.4,0.2] Koch Triadic Snowflakes in E2.
(N = 3 4O )

Level q=-25 q=-5 q=0 q=5 q=25

2 0.1029 0.1548 0.2986 0.4298 0.5075

4 0.3862 0.4917 0.8062 0.9193 0.8707

6 0.7162 0.7859 1.0053 0.9577 0.9113

8 1.0580 1.0588 1.0210 0.9581 0.9115

10 1.4027 1.3428 1.0220 0.9580 0.9115

12 1.7496 1.6372 1.0221 0.9580 0.9115

14 2.0992 1.9445 1.0221 0.9580 0.9115
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Table 3. Normalized Agglomeration Box-Counting [K=3,M= 1,P= 11 Fractal Dimension
DB(q)/D(q) versus Level for Asymmetric [0.4,0.21 Koch Triadic Snowflakes in E2.
(N = 3 4LEvm.)

Level q=-25 q=-5 q=0 q=5 q=25

1 0.0543 0.0824 0.1483 0.2630 0.3497

2 0.1834 0.2667 0.5045 0.6941 0.7652

3 0.3949 0.5077 0.8244 0.9155 0.8637

4 0.6178 0.7079 0.9773 0.9646 0.9083

5 0.8437 0.8819 1.0177 0.9737 0.9177

6 1.0930 1.0836 1.0246 0.9750 0.9198

7 1.3419 1.2949 1.0258 0.9753 0.9201

8 1.5448 1.4492 1.0261 0.9751 0.9199

9 1.7295 1.6108 1.0263 0.9751 0.9199

10 1.8953 1.7611 1.0263 0.9751 0.9199

i1 2.0597 1.9090 1.0263 0.9751 0.9199

12 2.2287 2.0656 1.0263 0.9751 0.9199

13 2.3981 2.2227 1.0263 0.9751 0.9199

14 2.5674 2.3795 1.0263 0.9751 0.9199
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Table 4. Normalized Agglomeration Box-Counting [K=8,M= 11 Fractal Dimension
D,(q)/D(q) versus Level for Split Snoilake Halls in E2.
(N = 1 + 11'v)

Level q=-25 q-5 q=0 q-5 q=25

2 0.1203 0.1628 0.2747 0.4068 0.4678

3 0.2464 0.3226 0.5576 0.7343 0.7767

4 0.3764 0.4559 0.7908 0.9319 0.9135

5 0.6045 0.6526 0.9022 0.9748 0.9609

6 0.8599 0.8533 0.9303 0.9772 0.9688

7 1.0927 1.0349 0.9352 0.9771 0.9689

8 13575 1.2493 0.9366 0.9771 0.9689

9 1.6121 1.4718 0.9370 0.9771 0.9689

10 1.8223 1.6595 0.9372 0.9771 0.9688

Table5. Normalized Agglomeration Box-Counting [K=3,M=1,P=1j Fractal Dimension
D9(q)/D(q) versus level for split snowflake halls in E'.
(N = 1 + 1 t vE)

Level q=-25 q=-5 q=O q=5 q=25

1 0.0091 0.0401 0.1128 0.1931 0.2338

2 0.2064 0.2742 0.4645 0.6393 0.6693

3 0.4098 0.4846 0.7682 0.9003 0.8818

4 0.6772 0.7033 0.8799 0.9531 0.9378

5 1.0265 0.9744 0.9016 0.9579 0.9490

6 1.2935 1.1909 0.9061 0.9571 0.9478

7 1.5803 1.4236 0.9070 0.9572 0.9479

8 1.7172 1.5409 0.9073 0.9573 0.9480

9 1.8404 1.6545 0.9075 0.9573 0.9480
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